skip to main content
Language:
Search Limited to: Search Limited to: Resource type Show Results with: Show Results with: Index

Broad Resistance to ACCase Inhibiting Herbicides in a Ryegrass Population Is Due Only to a Cysteine to Arginine Mutation in the Target Enzyme (Herbicide Resistance in a Ryegrass Population)

Kaundun, Shiv Shankhar ; Hutchings, Sarah-Jane ; Dale, Richard Paul ; McIndoe, Eddie Ingvarsson, Pär K. (Editor)

PLoS ONE, 2012, Vol.7(6), p.e39759 [Peer Reviewed Journal]

Full text available

View all versions
Citations Cited by
  • Title:
    Broad Resistance to ACCase Inhibiting Herbicides in a Ryegrass Population Is Due Only to a Cysteine to Arginine Mutation in the Target Enzyme (Herbicide Resistance in a Ryegrass Population)
  • Author: Kaundun, Shiv Shankhar ; Hutchings, Sarah-Jane ; Dale, Richard Paul ; McIndoe, Eddie
  • Ingvarsson, Pär K. (Editor)
  • Description: The design of sustainable weed management strategies requires a good understanding of the mechanisms by which weeds evolve resistance to herbicides. Here we have conducted a study on the mechanism of resistance to ACCase inhibiting herbicides in a Lolium multiflorum population (RG3) from the UK. ; Analysis of plant phenotypes and genotypes showed that all the RG3 plants (72%) that contained the cysteine to arginine mutation at ACCase codon position 2088 were resistant to ACCase inhibiting herbicides. Whole plant dose response tests on predetermined wild and mutant 2088 genotypes from RG3 and a standard sensitive population indicated that the C2088R mutation is the only factor conferring resistance to all ten ACCase herbicides tested. The associated resistance indices ranged from 13 for clethodim to over 358 for diclofop-methyl. Clethodim, the most potent herbicide was significantly affected even when applied on small mutant plants at the peri-emergence and one leaf stages. ; This study establishes the clear and unambiguous importance of the C2088R target site mutation in conferring broad resistance to ten commonly used ACCase inhibiting herbicides. It also demonstrates that low levels “creeping”, multigenic, non target site resistance, is not always selected before single gene target site resistance appears in grass weed populations subjected to herbicide selection pressure.
  • Is Part Of: PLoS ONE, 2012, Vol.7(6), p.e39759
  • Identifier: E-ISSN: 1932-6203 ; DOI: 10.1371/journal.pone.0039759
  • Subjects: Research Article ; Agriculture ; Biology ; Genetics And Genomics ; Biotechnology ; Ecology
  • Language: English

Searching Remote Databases, Please Wait